226 research outputs found

    Directly tracing the vertical stratification of molecules in protoplanetary disks

    Full text link
    We aim to directly trace the vertical location of the emitting surface of multiple molecular tracers in protoplanetary disks. Our sample of disks includes Elias 2-27, WaOph 6 and the sources targeted by the MAPS ALMA Large Program. The set of molecules studied include CO isotopologues in various transitions, HCN, CN, H2CO, HCO+, C2H and c-C3H2. The vertical emitting region is determined directly from the channel maps, implementing accurate masking of the channel emission to recover the vertical location of the emission surface even at large radial distances from the star and for low-SNR lines. The vertical location of the emitting layer is obtained for 4-10 lines in each disk. IM Lup, HD163296 and MWC 480 12CO and 13CO show vertical modulations, which are coincident with dust gaps and kinematical perturbations. We also present estimates of the gas pressure scale height in the disks from the MAPS sample. Compared to physical-chemical models we find good agreement with the vertical location of CO isotopologues. In HD 163296 CN and HCN trace a similar intermediate layer, for the other disks, the UV flux tracers and the vertical profiles of HCN and C2H are lower than predicted in theoretical models. HCN and H2CO show a highly structured vertical profile, possibly indicative of different formation pathways. It is possible to trace the vertical locations of multiple molecular species that trace a wide variety of physical and chemical disk properties. The distribution of CO isotopologues are found at a wide range of vertical heights z/r=z/r = 0.5-0.05. Other molecular lines are mostly found at z/rz/r \leq 0.15. The vertical layering of molecules is in agreement with theory in some systems, but not in all, therefore dedicated chemical-physical models are needed to further study and understand the emission surfaces.Comment: Accepted for publication in A&A. 29 pages, 28 figure

    Evidence for ubiquitous carbon grain destruction in hot protostellar envelopes

    Full text link
    Earth is deficient in carbon and nitrogen by up to 4{\sim}4 orders of magnitude compared with the Sun. Destruction of (carbon- and nitrogen-rich) refractory organics in the high-temperature planet forming regions could explain this deficiency. Assuming a refractory cometary composition for these grains, their destruction enhances nitrogen-containing oxygen-poor molecules in the hot gas (300\gtrsim 300K) after the initial formation and sublimation of these molecules from oxygen-rich ices in the warm gas (150{\sim}150K). Using observations of 3737 high-mass protostars with ALMA, we find that oxygen-containing molecules (CH3_3OH and HNCO) systematically show no enhancement in their hot component. In contrast, nitrogen-containing, oxygen-poor molecules (CH3_3CN and C2_2H3_3CN) systematically show an enhancement of a factor 5{\sim} 5 in their hot component, pointing to additional production of these molecules in the hot gas. Assuming only thermal excitation conditions, we interpret these results as a signature of destruction of refractory organics, consistent with the cometary composition. This destruction implies a higher C/O and N/O in the hot gas than the warm gas, while, the exact values of these ratios depend on the fraction of grains that are effectively destroyed. This fraction can be found by future chemical models that constrain C/O and N/O from the abundances of minor carbon, nitrogen and oxygen carriers presented here.Comment: Accepted for publication in ApJ Letter

    Involvement of institutions and local communities in turtles and cetacean monitoring and conservation in Maltese waters through networking

    Get PDF
    The loggerhead turtle (Caretta caretta) and the bottlenose dolphin (Tursiops truncatus) are regularly found around Maltese waters, especially the former. However, until recently, information on the populations and conservation status of both species in the area was lacking. The EU LIFE+ project MIGRATE (LIFE11 NAT/MT/1070) was carried out to address these information gaps by aiming to obtain more biotic data on these species and to identify areas essential for the life cycle and reproduction of these protected species in Maltese waters. To achieve these aims, amongst others, a citizen science approach was chosen, with the involvement of a number of institutes like the Maritime Squadron of the Armed Forces of Malta (AFM) and that of the Civil Protection Department (CPD) as well as local non-governmental organisations (NGOs) and other sea-user communities such as divers.peer-reviewe

    Sensory determinants of behavioral dynamics in Drosophila thermotaxis

    Get PDF
    Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis). By tracking the movements of animals responding to fixed spatial temperature gradients or random temperature fluctuations, we calculate the sensitivity and dynamics of the conversion of thermosensory inputs into motor responses. We discover three thermosensory neurons in each dorsal organ ganglion (DOG) that are required for positive thermotaxis. Random optogenetic stimulation of the DOG thermosensory neurons evokes behavioral patterns that mimic the response to temperature variations. In vivo calcium and voltage imaging reveals that the DOG thermosensory neurons exhibit activity patterns with sensitivity and dynamics matched to the behavioral response. Temporal processing of temperature variations carried out by the DOG thermosensory neurons emerges in distinct motor responses during thermotaxis

    Complex organic molecules in low-mass protostars on Solar System scales -- II. Nitrogen-bearing species

    Get PDF
    The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other sources. ALMA observations in Band 6 (\sim 1 mm) and Band 5 (\sim 2 mm) are studied at \sim 0.5" resolution, complemented by Band 3 (\sim 3 mm) data in a \sim 2.5" beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO, CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources. Their abundances relative to CH3OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of O-bearing species. The largest variations, of an order of magnitude, are seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the N-bearing species have similar excitation temperatures to those of O-bearing species (\sim 100 \sim 300 K). The similarity of most abundances with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared chemical history, especially the high D/H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH2CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The two sources discussed here add to the small number of sources with such a detailed chemical analysis on Solar System scales. Future JWST data will allow a direct comparison between the ice and gas abundances of N-bearing species.Comment: Accepted to A&A, 41 pages, 37 figure

    Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism

    Get PDF
    KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours

    Clinical characteristics and prognosis of osteosarcoma in young children: a retrospective series of 15 cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteosarcoma is the most common primary bone malignancy in childhood and adolescence. However, it is very rare in children under 5 years of age. Although studies in young children are limited in number, they all underline the high rate of amputation in this population, with conflicting results being recently reported regarding their prognosis.</p> <p>Methods</p> <p>To enhance knowledge on the clinical characteristics and prognosis of osteosarcoma in young children, we reviewed the medical records and histology of all children diagnosed with osteosarcoma before the age of five years and treated in SFCE (Société Française des Cancers et leucémies de l'Enfant) centers between 1980 and 2007.</p> <p>Results</p> <p>Fifteen patients from 7 centers were studied. Long bones were involved in 14 cases. Metastases were present at diagnosis in 40% of cases. The histologic type was osteoblastic in 74% of cases. Two patients had a relevant history. One child developed a second malignancy 13 years after osteosarcoma diagnosis.</p> <p>Thirteen children received preoperative chemotherapy including high-dose methotrexate, but only 36% had a good histologic response. Chemotherapy was well tolerated, apart from a case of severe late convulsive encephalopathy in a one-year-old infant. Limb salvage surgery was performed in six cases, with frequent mechanical and infectious complications and variable functional outcomes.</p> <p>Complete remission was obtained in 12 children, six of whom relapsed. With a median follow-up of 5 years, six patients were alive in remission, seven died of their disease (45%), in a broad range of 2 months to 8 years after diagnosis, two were lost to follow-up.</p> <p>Conclusions</p> <p>Osteosarcoma seems to be more aggressive in children under five years of age, and surgical management remains a challange.</p

    Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    Get PDF
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.Peer reviewe

    Water in the terrestrial planet-forming zone of the PDS 70 disk

    Get PDF
    Terrestrial and sub-Neptune planets are expected to form in the inner (<10 <10~AU) regions of protoplanetary disks. Water plays a key role in their formation, although it is yet unclear whether water molecules are formed in-situ or transported from the outer disk. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks, similar to PDS 70, the first system with direct confirmation of protoplanet presence. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (54 \sim54~AU) planet-carved gap separating an inner and outer disk. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2_2, and/or OH, and survival through water self-shielding. This is also supported by the presence of CO2_2 emission, another molecule sensitive to UV photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.Comment: To appear in Nature on 24 July 2023. 21 pages, 10 figures; includes extended data. Part of the JWST MINDS Guaranteed Time Observations program's science enabling products. Spectra downloadable on Zenodo at https://zenodo.org/record/799102
    corecore